Corrigé du devoir surveillé de mathématiques du 04 avril 2015

EXERCICE 1

Partie A. — Conjecture graphique

Graphiquement, on peut conjecturer que l'équation (E) admet 2 solutions réelles, l'une comprise entre -1 et 0 et l'autre comprise entre 0 et 1.

Partie B. — Étude de la validité de la conjecture graphique

- **1. a.** Pour tout réel $x, x^2 + x^3 = x^2(x+1)$ donc $x^2 + x^3$ a le même signe de x+1. Ainsi, $\underline{x^2 + x^3 \le 0}$ si $x \in]-\infty; -1]$ et $x^2 + x^3 \ge 0$ si $x \in [-1; +\infty[$.
 - **b.** Par théorème, pour tout réel x, $e^x > 0$. Or, on a vu que, pour tout $x \in]-\infty; -1]$, $x^2 + x^3 \le 0$ donc $3(x^2 + x^3) \le 0$ et donc $e^x \ne 3(x^2 + x^3)$. Ainsi, (E) n'a pas de solution sur l'intervalle $[-\infty; -1]$.
 - c. D'une part, $e^0 = 1$ et, d'autre part, $3(0^2 + 0^3) = 0 \neq e^0$ donc 0 n'est pas solution de (E).
- **2.** Pour tout $x \in]-1; 0[\cup]0; +\infty[, x^2 + x^3 > 0 \text{ done}]$

(E)
$$\Leftrightarrow \ln(e^x) = \ln(3(x^2 + x^3)) \Leftrightarrow x = \ln(3) + \ln(x^2(x+1))$$

 $\Leftrightarrow x = \ln(3) + \ln(x^2) + \ln(x+1) \Leftrightarrow \ln(3) + \ln(x^2) + \ln(x+1) - x = 0.$

Ainsi, pour tout réel $x \in]-1; 0[\cup]0; +\infty[$, (E) équivaut à h(x) = 0.

3. a. La fonction h est dérivable sur $]-1;0[\cup]0;+\infty[$ comme somme et composée de fonctions dérivables et, pour tout $x \in]-1;0[\cup]0;+\infty[$,

$$h'(x) = \frac{2x}{x^2} + \frac{1}{1+x} - 1 = \frac{2}{x} + \frac{1 - (x+1)}{x+1} = \frac{2}{x} - \frac{x}{x+1} = \frac{2(x+1) - x^2}{x(x+1)}$$

i.e.
$$h'(x) = \frac{-x^2 + 2x + 2}{x(x+1)}.$$

b. Étudions le signe du trinôme $P(x) = -x^2 + 2x + 2$ sur \mathbb{R} . Le discriminant de P(x) est $2^2 - 4 \times (-1) \times 2 = 12$ donc P(x) admet deux racines réelles qui sont $x_1 = \frac{-2 - \sqrt{12}}{2 \times (-1)} = \frac{-2 - 2\sqrt{3}}{-2} = 1 + \sqrt{3}$ et $x_2 = \frac{-2 + \sqrt{12}}{2 \times (-1)} = \frac{-2 + 2\sqrt{3}}{-2} = 1 - \sqrt{3}$. Comme a = -1 < 0, on en déduit que $P(x) \le 0$ si $x \in]-\infty; 1 - \sqrt{3}] \cup [1 + \sqrt{3}; +\infty[$ et que $P(x) \ge 0$ si $x \in [1 - \sqrt{3}; 1 + \sqrt{3}]$.

Étant donné que $x_1 > 0$ et que $x_2 \in]-1;0[$, on en déduit le tableau de signe suivant :

x	-1		1-	3	0	1	$1+\sqrt{3}$	3	$+\infty$
Signe $de x$		_		_	0	+		+	
Signe de $x+1$		+		+		+		+	
Signe de $P(x)$		_	0	+		+	0	_	
Signe de $h'(x)$		+	0	_		+	0	_	

Ainsi, h est strictement croissante sur $\left]-1;1-\sqrt{3}\right]$, strictement décroissante sur $\left[1-\sqrt{3};0\right]$, strictement croissante sur $\left[1+\sqrt{3};+\infty\right[$.

c. Sur l'intervalle]-1;0[, le maximum de h est $h(1-\sqrt{3})\approx -0.1$ donc, pour tout $x\in]-1;0[$, h(x)<0 et l'équation h(x)=0 n'a donc pas de solution sur l'intervalle]-1;0[. Sur l'intervalle]0;1+ $\sqrt{3}$], la fonction h est continue car dérivable et strictement croissante. De plus, d'après l'énoncé, $\lim_{x\to 0}h(x)=-\infty$ et $h(1+\sqrt{3})\approx 1.7>0$ donc, comme $0\in]-\infty;h(1+\sqrt{3})]$, on déduit du corollaire du théorème des valeurs intermédiaires que l'équation h(x)=0 admet une unique solution α dans l'intervalle]0;1+ $\sqrt{3}$]. Sur l'intervalle $[1+\sqrt{3};+\infty[$, la fonction h est continue car dérivable et strictement décroissante. De plus, d'après l'énoncé, $\lim_{x\to +\infty}h(x)=-\infty$ et $h(1+\sqrt{3})\approx 1.7>0$ donc on déduit de même que l'équation h(x)=0 admet une unique solution β dans l'intervalle $[1+\sqrt{3};+\infty[$. Ainsi, on conclut finalement que l'équation h(x)=0 admet exactement deux solutions sur $]-1;0[\cup]0;+\infty[$.

A l'aide de la calculatrice, on trouve $\alpha \approx 0.62$ et $\beta \approx 7.12$.

d. On conclut que la conjecture de la partie A était fausse puisque, s'il y a bien 2 solutions pour l'équation h(x) = 0 (et donc pour (E)), la plus petite est comprise entre 0 et 1 et non entre -1 et 0 et la seconde n'avait pas été lue sur le graphique car elle n'apparaissait pas dans la fenêtre d'affichage.

EXERCICE 2

Question	1	2	3	4	5
Sujet A	a	c	b	b	a
Sujet B	Α	\mathbf{E}	G	J	N

Explications

1. Notons I et J les milieux respectifs de [AD] et [BC]. Alors,

$$\begin{split} \overrightarrow{\mathrm{IG}} &= \overrightarrow{\mathrm{IA}} + \overrightarrow{\mathrm{AG}} = \overrightarrow{\mathrm{IA}} + \frac{1}{4}\overrightarrow{\mathrm{AB}} + \frac{1}{4}\overrightarrow{\mathrm{AC}} + \frac{1}{4}\overrightarrow{\mathrm{AD}} \\ &= \overrightarrow{\mathrm{IA}} + \frac{1}{4}\overrightarrow{\mathrm{AD}} + \frac{1}{4}\left(\overrightarrow{\mathrm{AJ}} + \overrightarrow{\mathrm{JB}} + \overrightarrow{\mathrm{AJ}} + \overrightarrow{\mathrm{JC}}\right) \\ &= \overrightarrow{\mathrm{IA}} + \frac{1}{4} \times \left(-2\overrightarrow{\mathrm{IA}}\right) + \frac{1}{2}\overrightarrow{\mathrm{AJ}} + \frac{1}{4}\underbrace{\left(\overrightarrow{\mathrm{JB}} + \overrightarrow{\mathrm{JC}}\right)}_{=\overrightarrow{\mathrm{O}}} \\ &= \frac{1}{2}\overrightarrow{\mathrm{IA}} + \frac{1}{2}\overrightarrow{\mathrm{AJ}} = \frac{1}{2}\left(\overrightarrow{\mathrm{IA}} + \overrightarrow{\mathrm{AJ}}\right) = \frac{1}{2}\overrightarrow{\mathrm{IJ}} \end{split}$$

Ainsi, les vecteurs \overrightarrow{IG} et \overrightarrow{IJ} sont colinéaires donc les points I, J et G sont alignés.

- **2.** Etant donné que $AB^2 = 2^2 + 4^2 + 6^2 = 56$, $AC^2 = (-4)^2 + 6^2 + 2^2 = 56$ et $BC^2 = (-6)^2 + 2^2 + (-4)^2 = 56$, $AB = AC = BC = \sqrt{56}$ donc ABC est équilatéral.
- 3. Notons Δ la droite parallèle à la droite (AB) passant par le point C. Alors, tout vecteur directeur de Δ est colinéaire à \overrightarrow{AB} (2;4;6). Ceci élimine la réponse \mathbf{c} puisque dans cette représentation un vecteur directeur a pour coordonnées (1;-1;2). Les deux autres sont en revanche possibles puisque les vecteurs de coordonnées (2;4;6) et (1;2;3) sont colinéaires à \overrightarrow{AB} . De plus, $C \in \Delta$ et on vérifie que, pour la représentation \mathbf{b} , C est le point de paramètre t=1 donc c'est cette représentation qui correspond à Δ .
- **4.** Les droites (d) et (d') sont dirigées respectivement par $\vec{u}(1;2;-5)$ et $\vec{v}(-1;-2;-4)$. Puisque $x_{\vec{u}}z_{\vec{v}}=-4\neq 5=x_{\vec{v}}z_{\vec{u}},\ \vec{u}$ et \vec{v} ne sont pas colinéaires donc (d) et (d') ne sont pas parallèles.

Étudions $(d) \cap (d')$. Pour cela, on résout le système :

$$(S): \begin{cases} 5+t=6-k \\ 2t=2-2k \\ 1-5t=-4+4k \end{cases} \Leftrightarrow \begin{cases} t=1-k \\ 2(1-k)=2-2k \\ 1-5(1-k)=-4+4k \end{cases} \Leftrightarrow \begin{cases} t=5-k \\ 2-2k=2-2k \\ -4+5k=-4+4k \end{cases}$$
$$\Leftrightarrow \begin{cases} t=1-k \\ k=0 \end{cases} \Leftrightarrow \begin{cases} t=1-k \\ k=0 \end{cases}$$

Ainsi, (S) admet une unique solution donc (d) et (d') sont sécantes (au point I(6;2;-4)).

5. Une représentation paramétrique de (P) est $\begin{cases} x=2+3k+k'\\ y=1+2k\\ z=3k+4k' \end{cases}$ avec $k\in\mathbb{R}$ et $k'\in\mathbb{R}$. Pour

étudier les positions relatives de (d) et (P), résolvons le système suivant :

$$(T): \begin{cases} 5+t=2+3k+k' \\ 2t=1+2k \\ 1-5t=3k+4k' \end{cases} \Leftrightarrow \begin{cases} t=-3+3k+k' \\ 2(-3+3k+k')=1+2k \\ 1-5(-3+3k+k')=3k+4k' \end{cases} \Leftrightarrow \begin{cases} t=-3+3k+k' \\ 4k+2k'-7=0 \\ 18k+9k'-16=0 \end{cases}$$

$$(T) \Leftrightarrow \begin{cases} t=-3+3k+k' \\ k'=-2k+\frac{7}{2} \\ 18k+9\left(-2k+\frac{7}{2}\right)-16=0 \end{cases} \Leftrightarrow \begin{cases} t=-3+3k+k' \\ \frac{31}{2}=0 \end{cases}$$

La dernière égalité est absurde donc (T) n'a pas de solution. On en déduit que (d) est strictement parallèle à (P).

Exercice 3 (enseignement obligatoire)

- 1. Le discriminant du trinôme $z^2 2z\sqrt{3} + 4$ est $\Delta = (-2\sqrt{3})^2 4 \times 1 \times 4 = -4 < 0$. Ainsi, l'équation (E) admet deux racines complexes conjuguées qui sont $z_1 = \frac{2\sqrt{3} \mathrm{i}\sqrt{4}}{2} = \sqrt{3} \mathrm{i}$ et $\overline{z_1} = \sqrt{3} + \mathrm{i}$. L'ensemble des solutions dans $\mathbb C$ de l'équation (E) est $\{\sqrt{3} \mathrm{i}, \sqrt{3} + \mathrm{i}\}$.
- **2.** a. $z_1 = 2e^{-i\frac{\pi}{6}} = 2\left[\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right] = 2\left(\frac{\sqrt{3}}{2} \frac{1}{2}i\right) = \sqrt{3} i \text{ donc, d'après la question 1,}$ ce nombre est bien une solution de (E).
 - **b.** D'une part, $z_2 = 2^2 e^{i\frac{\pi}{6}} = 4 \left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) \right] = 4 \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$ i.e. $\boxed{z_2 = 2\sqrt{3} + 2i}$ et, d'autre part, $z_3 = 2^3 e^{-i\frac{\pi}{6}} = 8e^{-i\frac{\pi}{6}} = 4z_1$ i.e. $\boxed{z_3 = 4\sqrt{3} 4i}$. **c.** Soit $n \in \mathbb{N}^*$. Alors, $z_n = 2^n e^{i(-1)^n \frac{\pi}{6}} = 2^n \left[\cos\left((-1)^n \frac{\pi}{6}\right) + i\sin\left((-1)^n \frac{\pi}{6}\right) \right]$. Or,
 - c. Soit $n \in \mathbb{N}^*$. Alors, $z_n = 2^n e^{\mathrm{i}(-1)^n \frac{\pi}{6}} = 2^n \left[\cos \left((-1)^n \frac{\pi}{6} \right) + \mathrm{i} \sin \left((-1)^n \frac{\pi}{6} \right) \right]$. Or, $\underline{\mathrm{si} \ n \ \mathrm{est \ pair}} \ \mathrm{alors \ } \cos \left((-1)^n \frac{\pi}{6} \right) = \cos \left(\frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} \ \mathrm{et \ sin} \left((-1)^n \frac{\pi}{6} \right) = \sin \left(\frac{\pi}{6} \right) = \frac{1}{2} \ ;$ $\underline{\mathrm{si} \ n \ \mathrm{est \ impair}} \ \mathrm{alors \ } \cos \left((-1)^n \frac{\pi}{6} \right) = \cos \left(-\frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} \ \mathrm{et \ sin} \left((-1)^n \frac{\pi}{6} \right) = \sin \left(-\frac{\pi}{6} \right) = -\frac{1}{2} .$ Ainsi, dans tous les cas, $\cos \left((-1)^n \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} \ \mathrm{et \ sin} \left((-1)^n \frac{\pi}{6} \right) = \frac{(-1)^n}{2} .$ On conclut donc que $\left[z_n = 2^n \left(\frac{\sqrt{3}}{2} + \frac{(-1)^n}{2} \mathrm{i} \right) \right] .$
- 3. $M_1 M_2 = |z_2 z_1| = |2\sqrt{3} + 2i (\sqrt{3} i)| = |\sqrt{3} + 3i| = \sqrt{\sqrt{3}^2 + 3^2} = \sqrt{12} \text{ i.e. } \boxed{M_1 M_2 = 2\sqrt{3}}$ et $M_2 M_3 = |z_3 z_2| = |4\sqrt{3} 4i (2\sqrt{3} + 2i)| = |2\sqrt{3} 6i| = \sqrt{(2\sqrt{3})^2 + (-6)^2} = \sqrt{48} \text{ i.e. } \boxed{M_2 M_3 = 4\sqrt{3}}$.

Entrée: A un réel

L prend la valeur $2\sqrt{3}$ Initialisation:

N prend la valeur 1

Traitement:

Tant que L < A | Affecter à L la valeur $L + 2^{N+1}\sqrt{3}$ | N prend la valeur N + 1

Fin du Tant que

Afficher NSortie:

- **b.** D'après l'énoncé, pour tout entier $n \geq 1$, $M_n M_{n+1} = 2^n \sqrt{3}$ donc la suite $(M_n M_{n+1})$ est une suite géométrique de raison 2 et de premier terme $M_1M_2=2\sqrt{3}$. On en déduit, par théorème, que, pour tout entier $n\geq 1$, $\ell_n=2\sqrt{3}\frac{1-2^n}{1-2}=2\sqrt{3}\frac{1-2^n}{-1}$ i.e. $\ell_n=2\sqrt{3}(2^n-1)$.
- **c.** Il s'ensuit, puisque $2\sqrt{3} > 0$, que

$$\ell_n \ge 10^{50} \Leftrightarrow 2\sqrt{3} (2^n - 1) \ge 10^{50} \Leftrightarrow 2^n - 1 \ge \frac{10^{50}}{2\sqrt{3}} \Leftrightarrow 2^n \ge \frac{10^{50}}{2\sqrt{3}} + 1$$

et, puisque $\frac{10^{50}}{2\sqrt{3}} + 1 > 0$ et $\ln(2) > 0$,

$$\ell_n \ge 10^{50} \Leftrightarrow \ln(2^n) \ge \ln\left(\frac{10^{50}}{2\sqrt{3}} + 1\right) \Leftrightarrow n\ln(2) \ge \ln\left(\frac{10^{50}}{2\sqrt{3}} + 1\right) \Leftrightarrow n \ge \frac{\ln\left(\frac{10^{50}}{2\sqrt{3}} + 1\right)}{\ln(2)}.$$

Or, $\frac{\ln\left(\frac{10^{50}}{2\sqrt{3}}+1\right)}{\ln(2)} \approx 164,3$ donc le premier entier tel que $\ell_n \geq 10^{50}$ est n=165. Ainsi, si on entre $A = 10^{50}$, l'algorithme affiche en sortie N = 165

Exercice 3 (enseignement de spécialité)

1.

B	A	D	D > 0
14	12	2	VRAIE
12	2	10	VRAIE
2	10	8	VRAIE
10	8	2	VRAIE
8	2	6	VRAIE
2	6	4	VRAIE
6	4	2	VRAIE
4	2	2	VRAIE
2	2	0	FAUSSE

La valeur affichée en sortie est 2

- 2. a. D'après l'énoncé, 221 et 331 sont premiers entre eux donc, d'après le théorème de Bézout, il existe des entiers u et v tels que 221u + 331v = 1. En posant, x = u et y = -v, on obtient deux entiers x et y tels que 221x - 331y = 1. L'équation (E) admet donc bien des solutions dans \mathbb{Z}^2 .
 - **b.** Puisque $221 \times 3 331 \times 2 = 663 662 = 1$, le couple (3; 2) est bien une solution particulière

Soit $(x;y) \in \mathbb{Z}^2$ une solution de (E). Alors, $221x - 331y = 1 = 221 \times 3 - 331 \times 2$ donc 221(x-3) = 331(y-2). Ainsi, 331 divise 221(x-3) et, comme 331 et 221 sont premiers entre eux, d'après le théorème de Gauss, 331 divise x-3. Ainsi, il existe un entier k tel que x-3=331k i.e. x=3+331k. Dès lors, $221\times 331k=331(y-2)$ donc 221k=y-2 i.e. y=2+221k. Ainsi, le couple (x;y) est de la forme (3+331k;2+221k) avec $k\in\mathbb{Z}$.

Réciproquement, si $k \in \mathbb{Z}$,

$$221(3+331k) - 331(2+221k) = 663 + 221 \times 331k - 662 - 331 \times 221k = 1$$

donc (3+331k;2+221k) est solution de (E).

On conclut que l'ensemble des solutions de (E) est $\{(3+331k; 2+221k) | k \in \mathbb{Z}\}$.

- 3. a. Par définition, (v_n) est une suite arithmétique de raison 331 et de premier terme $v_0=3$ donc, pour tout $n \in \mathbb{N}$, $v_n = 3 + 331n$
 - **b.** Un couple d'entiers (p;q) vérifie $u_p = v_q$ si et seulement si 2 + 221p = 3 + 331q c'est-à-dire 221p-331q=1. Ainsi, $u_p=v_q$ si et seulement si $(p\,;q)$ est solution de (E). On déduit de la question 2 que $u_p = v_q$ si et seulement s'il existe un entier k tel que p = 3 + 331k et q=2+221k. Dès lors, les conditions $0 \le p \le 500$ et $0 \le q \le 500$ impose que k=0 ou k=1. On en déduit que les couples (p;q) tels que $u_p = v_q$ avec $0 \le p \le 500$ et $0 \le q \le 500$ sont (3;2) et (334;223).

EXERCICE 4

Partie A

- 1. Graphiquement, on lit f(1) = 2 et f'(1) = 0 (puisque la tangente en B est horizontale).
- 2. La fonction f est dérivable par quotient de fonctions dérivables et, pour tout réel strictement positif x,

$$f'(x) = \frac{b \times \frac{1}{x} \times x - (a + b \ln(x)) \times 1}{x^2} = \frac{b - a - b \ln(x)}{x^2}$$

3. Etant donné que $f(1) = \frac{a + b \ln 1}{1} = a$, on déduit de la question 1 que a = 2. Dès lors, comme $f'(1) = 0, b - 2 - 2\ln(1) = 0$ i.e. b - 2 = 0 soit b = 2. Ainsi, a = b = 2

Partie B

- 1. D'après la partie A, pour tout réel $x \in]0; +\infty[$, $g'(x) = \frac{2-2-2\ln(x)}{x^2} = \frac{-2\ln(x)}{x^2}$ donc, sachant que 2 > 0 et $x^2 > 0$, g'(x) a bien le même signe que $-\ln x$.

2. Par théorème, $\lim_{x\to 0} \ln x = -\infty$ donc $\lim_{x\to 0} 2 + 2 \ln x = -\infty$. Par quotient, puisque x>0, on en déduit que $\lim_{x\to 0} g(x) = -\infty$.

Par ailleurs, pour tout réel x>0, $g(x)=\frac{2}{x}+2\frac{\ln(x)}{x}$. Or, $\lim_{x\to +\infty}\frac{2}{x}=0$ et, par théorème, $\lim_{x\to +\infty}\frac{\ln(x)}{x}=0$ donc, par somme, $\lim_{x\to +\infty}g(x)=0$.

3. Étant donné que $\ln(x) \ge 0$ si $x \ge 1$ et $\ln(x) \le 0$ si $x \le 1$, on déduit des questions précédentes le tableau de variation suivant :

x	0	1	$+\infty$
Signe de $g'(x)$		- 0 +	
Variation de g			$-\infty$

4. A l'aide de la calculatrice, on trouve $0.46 \le \alpha \le 0.47$

- 5. Par définition, $g(\alpha)=1$ donc $\frac{2+2\ln(\alpha)}{\alpha}=1$. Ainsi, $2+2\ln(\alpha)=\alpha$ donc $2\ln(\alpha)=\alpha-2$. Étant donné que $0.46 \le \alpha \le 0.47$, on en déduit que $0.46-2 \le \alpha-2 \le 0.47-2$ et ainsi on aboutit à $-1.54 \le 2\ln(\alpha) \le -1.53$.
- **6.** On a vu que $\alpha \geq 0,46$ et $\beta \geq 5,35$ donc, puisque tous les nombres considérés sont positifs, $\alpha\beta \geq 0,46 \times 5,35 = 2,461$. Par croissance de la fonction carré sur $[0;+\infty[$, il s'ensuit que $(\alpha\beta)^2 \geq (2,461)^2 \approx 6,056$ donc $(\alpha\beta)^2 \geq 6,05$.

Par ailleurs, $-1.53 \ge 2\ln(\alpha) \ge -1.54$ donc $1.53 \le -2\ln(\alpha) \le 1.54$ et $2\ln(\beta) \le 3.36$ donc, puisque tous les nombres considérés sont positifs, $-2\ln(\alpha) \times 2\ln(\beta) \le 1.54 \times 3.36 = 5.1744$. Ainsi, $-4\ln(\alpha)\ln(\beta) \le 5.18$ donc $4\ln(\alpha)\ln(\beta) \ge -5.18$.

7. Notons T_{α} et T_{β} les tangentes à la courbe de g respectivement aux points d'abscisses α et β . Alors, l'équation réduite de T_{α} est $y = g'(\alpha)(x - \alpha) + g(\alpha)$ i.e. $y = g'(\alpha)x - \alpha g'(\alpha) + g(\alpha)$. Il s'ensuit qu'un vecteur directeur de T_{α} est $\vec{u}(1, g'(\alpha))$.

On montre de même qu'un vecteur directeur de T_{β} est $\vec{v}(1, g'(\beta))$. Dès lors,

$$\vec{u} \cdot \vec{v} = 1 \times 1 + g'(\alpha)g'(\beta) = 1 + \frac{-2\ln(\alpha)}{\alpha^2} \times \frac{-2\ln(\beta)}{\beta^2} = 1 + \frac{4\ln(\alpha)\ln(\beta)}{(\alpha\beta)^2} = \frac{(\alpha\beta)^2 + 4\ln(\alpha)\ln(\beta)}{(\alpha\beta)^2}.$$

Or, d'après la question précédente, $(\alpha\beta)^2 \ge 6.05$ et $4\ln(\alpha)\ln(\beta) \ge -5.18$ donc

$$(\alpha\beta)^2 + 4\ln(\alpha)\ln(\beta) > 6.05 + (-5.18) = 0.87.$$

En particulier, $(\alpha\beta)^2 + 4\ln(\alpha)\ln(\beta) \neq 0$ donc $\vec{u} \cdot \vec{v} \neq 0$.

Ainsi, \vec{u} et \vec{v} ne sont pas orthogonaux et donc T_{α} et T_{β} ne sont pas perpendiculaires