Corrigé du surveillé de mathématiques du 04/10/14

EXERCICE 1

1. **a.** $P(4) = 4^3 - 8 \times 4^2 + 21 \times 4 - 20 = 64 - 128 + 84 - 20$ soit P(4) = 0

b. Soit $z \in \mathbb{C}$. Alors, $(z-4)(z^2-4z+5) = z^3-4z^2+5z-4z^2+16z-20 = z^3-8z^2+21z-20 = P(z)$. Ainsi, on a bien, pour tout $z \in \mathbb{C}$, $P(z) = (z-4)(z^2-4z+5)$.

c. En utilisant la question précédente :

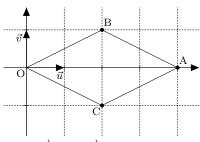
$$P(z) = 0 \Leftrightarrow (z-4)(z^2 - 4z + 5) = 0 \Leftrightarrow z-4 = 0 \text{ ou } z^2 - 4z + 5 = 0.$$

Or, d'une part, z-4=0 si et seulement si z=4. D'autre part, le discriminant de z^2-4z+5 est $\Delta=(-4)^2-4\times 1\times 5=-4<0$ donc l'équation $z^2-4z+5=0$ admet deux solutions complexes conjuguées qui sont

$$z_1 = \frac{-(-4) - i\sqrt{4}}{2 \times 1} = \frac{4 - 2i}{2} = 2 - i$$
 et $z_2 = \overline{z_1} = 2 + i$.

On conclut que l'ensemble des solutions dans \mathbb{C} de P(z)=0 est $\{4\ ;\ 2-\mathrm{i}\ ;\ 2+\mathrm{i}\}$

2. a.



b. Calculons les affixes des vecteurs \overrightarrow{OB} et \overrightarrow{CA} :

$$z_{\overrightarrow{OB}} = z_{B} = 2 + i$$
 et $z_{\overrightarrow{CA}} = z_{A} - z_{C} = 4 - (2 - i) = 2 + i$.

Ainsi, $z_{\overrightarrow{\mathrm{OB}}} = z_{\overrightarrow{\mathrm{CA}}}$ donc $\overrightarrow{\mathrm{OB}} = \overrightarrow{\mathrm{CA}}$ ce qui démontre que OBAC est un parallélogramme .

EXERCICE 2

1. Etant donné que $\frac{1-3i}{5-3i} = \frac{(1-3i)(5+3i)}{5^2+3^2} = \frac{5+3i-15i+9}{34} = \frac{14-12i}{34} = \frac{7}{17} - \frac{6}{17}i$, la partie réel de $\frac{1-3i}{5-3i}$ est $\frac{7}{17}$. L'affirmation est donc FAUSSE.

2. L'affirmation est FAUSSE. Par exemple, pour $z=-1,\ Z=\frac{1+(-1)}{1-3\mathrm{i}}=0$ donc $\bar{Z}=0$ mais $\frac{1-\left(\overline{-1}\right)}{1-3\mathrm{i}}=\frac{2}{1-3\mathrm{i}}\neq0.$

En fait, d'après les propriétés de la conjugaison, pour tout complexe z, le conjugué de

$$\overline{\left(\frac{1+z}{1-3\mathrm{i}}\right)} = \frac{\overline{1+z}}{\overline{1-3\mathrm{i}}} = \frac{1+\overline{z}}{1+3\mathrm{i}}.$$

3. Pour tout complexe z,

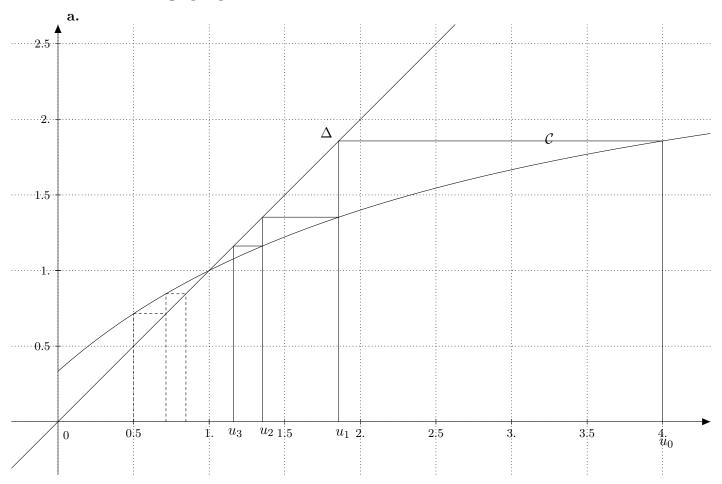
$$(1+\mathrm{i})\overline{z}+3-\mathrm{i}=\overline{z}\Leftrightarrow (1+\mathrm{i})\overline{z}-\overline{z}=-3+\mathrm{i}\Leftrightarrow \mathrm{i}\overline{z}=-3+\mathrm{i}\Leftrightarrow \overline{z}\frac{(-3+\mathrm{i})-\mathrm{i}}{1}\Leftrightarrow \overline{z}=1+3\mathrm{i}\Leftrightarrow z=1-3\mathrm{i}.$$

Ainsi, l'ensemble des solutions de $(1+i)\overline{z}+3-i=\overline{z}$ dans $\mathbb C$ est $\{1-3i\}$. L'affirmation est donc FAUSSE.

- 4. Le discriminant de $z^2 4z + 6$ est $\Delta = (-4)^2 4 \times 1 \times 6 = -8 < 0$ donc l'équation $z^2 4z + 6 = 0$ admet deux solutions complexes conjuguées z_1 et $z_2 = \overline{z_1}$. Notons M_1 et M_2 les points d'affixes respectives z_1 et z_2 . Si on écrit $z_1 = a + ib$ sous forme algébrique alors les coordonnées de M_1 sont (a;b) et celles de M_2 sont (a;-b) puisque $z_2 = \overline{z_1}$. Ainsi, M_1 et M_2 sont symétriques par rapport à l'axe des abscisses. L'affirmation est VRAIE.
- **5.** Etant donné que $i^2 = -1$, $i^4 = (i^2)^2 = (-1)^2 = 1$ donc $i^{4n+1} = i^{4n} \times i = [i^4]^n \times i = 1^n \times i = i$. Ainsi, l'affirmation est VRAIE.

EXERCICE 3

1. Considérations graphiques



- **b.** A l'aide du graphique, on peut conjecturer que (u_n) est décroissante.
- c. Si, comme on l'a représenté sur le graphique en pointillés, on prend $u_0 = 0.5$ alors il semble que la suite ne soit plus décroissante mais croissante. Le résultat n'est donc pas le même quelle que soit la valeur de u_0 . Plus précisément, on peut penser que (u_n) est croissante si $u_0 \in [0;1]$ et décroissante si $u_0 \in [1;+\infty[$.

2. Un algorithme

L'algorithme n°1 n'affiche qu'une seule valeur de u, la valeur finale, qui correspond à u_n . L'algorithme n°2 affecte à u la valeur 4 juste avant l'affichage donc cet algorithme affiche n fois le nombre 4.

Ainsi, seul l'algorithme n°3 peut convenir.

3. Etude du sens de variation de (u_n)

a. Soit $n \in \mathbb{N}$. Alors,

$$u_{n+1} - 1 = \frac{1 + 3u_n}{3 + u_n} - 1 = \frac{1 + 3u_n - (3 + u_n)}{3 + u_n} = \frac{-2 + 2u_n}{3 + u_n}$$

et donc, en factorisant par 2 au numérateur, $u_{n+1} - 1 = \frac{2(u_n - 1)}{3 + u_n}$

b. Soit la proposition $P_n : \langle u_n \geq 1 \rangle$ pour tout $n \in \mathbb{N}$.

Comme $u_0 = 4 \ge 1$, P_0 est vraie.

Supposons que P_k est vraie pour un certain $k \in \mathbb{N}$.

Alors, $u_k \ge 1$ donc $u_k - 1 \ge 0$. Dès lors, $2(u_k - 1) \ge 0$. Par ailleurs, $3 + u_k \ge 4 > 0$ donc, par quotient, $\frac{2(u_k - 1)}{3 + u_k} \ge 0$. On déduit alors de la question a. que $u_{k+1} - 1 \ge 0$ i.e. $u_{k+1} \ge 1$.

Ainsi, P_{k+1} est vraie et on a démontré par récurrence que, pour tout $n \in \mathbb{N}, u_n \geq 1$

c. Soit $n \in \mathbb{N}$. Alors,

$$u_{n+1} - u_n = \frac{1 + 3u_n}{3 + u_n} - u_n = \frac{1 + 3u_n - u_n(3 + u_n)}{3 + u_n} = \frac{1 - u_n^2}{3 + u_n}.$$

Or, $u_n \ge 1$ donc, par croissance de la fonction carré sur $[0; +\infty[$, $u_n^2 \ge 1^2 = 1$ et ainsi $1 - u_n^2 \le 0$. Etant donné que, comme on l'a déjà dit, $3 + u_n > 0$, il s'ensuit que $u_{n+1} - u_n \le 0$. On conclut donc que (u_n) est décroissante.

4. Expression de u_n en fonction de n

a. Soit $n \in \mathbb{N}$. Alors,

$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 1} = \frac{\frac{1+3u_n}{3+u_n} - 1}{\frac{1+3u_n}{3+u_n} + 1} = \frac{\left[\frac{1+3u_n}{3+u_n} - 1\right] \times (3+u_n)}{\left[\frac{1+3u_n}{3+u_n} + 1\right] \times (3+u_n)}$$
$$= \frac{1+3u_n - (3+u_n)}{1+3u_n + 3+u_n} = \frac{-2+2u_n}{4+4u_n} = \frac{2(u_n - 1)}{4(u_n + 1)} = \frac{1}{2} \times \frac{u_n - 1}{u_n + 1}$$

i.e. $v_{n+1} = \frac{1}{2}v_n$. Ainsi, (v_n) est une suite géométrique de raison $\frac{1}{2}$.

b. Sachant que $v_0 = \frac{u_0 - 1}{u_0 + 1} = \frac{4 - 1}{4 + 1}$, $v_0 = \frac{3}{5}$. On déduit alors de la question précédente que, pour tout $n \in \mathbb{N}$, $v_n = \frac{3}{5} \times \left(\frac{1}{2}\right)^n$ soit encore, pour tout $n \in \mathbb{N}$, $v_n = \frac{3}{5 \times 2^n}$.

c. Pour tout $n \in \mathbb{N}$, $2^n \ge 1$ donc $5 \times 2^n \ge 5$ et ainsi $v_n = \frac{3}{5 \times 2^n} \le \frac{3}{5}$. En particulier, pour tout $n \in \mathbb{N}$, $v_n \ne 1$.

<u>Autre méthode</u>. — Par définition, pour tout $n \in \mathbb{N}$, $v_n = \frac{u_n - 1}{u_n + 1}$. Supposons que pour un certain $n \in \mathbb{N}$, $v_n = 1$. Alors, $\frac{u_n - 1}{u_n + 1} = 1$ i.e. $u_n - 1 = u_n + 1$ et donc -1 = 1 ce qui est absurde. Ainsi, pour tout $n \in \mathbb{N}$, $v_n \neq 1$.

d. Soit $n \in \mathbb{N}$. Par définition, $v_n = \frac{u_n - 1}{u_n + 1}$ donc $v_n(u_n + 1) = u_n - 1$. Ainsi, $v_n u_n + v_n = u_n - 1$ donc $v_n u_n - u_n = -v_n - 1$ soit encore $u_n(v_n - 1) = -v_n - 1$. Etant donné que $v_n \neq 1$ d'après la question précédente, on en déduit que $u_n = \frac{-v_n - 1}{v_n - 1}$ ce qui peut encore s'écrire

$$u_n = \frac{1 + v_n}{1 - v_n}$$

e. On déduit des questions b. et d. que, pour tout $n \in \mathbb{N}, u_n = \frac{1 + \frac{3}{5 \times 2^n}}{1 - \frac{3}{5 \times 2^n}}$ i.e. en multipliant numérateur et dénominateur par $5 \times 2^n, u_n = \frac{5 \times 2^n + 3}{5 \times 2^n - 3}$.