Correction du devoir surveillé de mathématiques du 20/04/2013 Enseignement obligatoire

EXERCICE 1

- 1. **a.** Par théorème $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$. Par ailleurs, $\lim_{x \to 0} \ln x = -\infty$ donc, comme x tend vers 0 par valeurs supérieures, par quotient, $\lim_{x \to 0} \frac{\ln x}{x} = -\infty$.
 - **b.** La fonction f est dérivable sur $]0; +\infty[$ par quotient de fonctions dérivables et, pour tout x > 0, $f'(x) = \frac{\frac{1}{x} \times x \ln(x) \times 1}{x^2}$ i.e. $f'(x) = \frac{1 \ln(x)}{x^2}$.
 - **c.** Pour tout x > 0, le signe de f'(x) est le signe de $1 \ln(x)$. Or, $\ln(x) \le 1$ si et seulement si $x \le e$ donc $f'(x) \le 0$ pour tout $x \in]0; e]$ et $f'(x) \ge 0$ si et seulement si $x \in [e; +\infty[$. On conclut alors que f est croissante sur]0; e] et f est décroissante sur $[e; +\infty[$.
- **2. a.** En remarquant que, pour tout x > 0, $g(x) = \ln(x) \times f(x)$, on déduit de la question 1 que, par produit, $\lim_{x \to 0} g(x) = +\infty$.
 - $\mathbf{b.} \ \, \mathrm{Soit} \ \, x>0. \ \, \mathrm{Alors}, \, g(x)=\frac{(\ln x)^2}{x}=\frac{\left(\ln \sqrt{x}^2\right)^2}{\sqrt{x}^2}=\left(2\frac{\ln \sqrt{x}}{\sqrt{x}}\right)^2 \, \mathrm{soit} \, \overline{\left[g(x)=4\left(\frac{\ln \sqrt{x}}{\sqrt{x}}\right)^2\right]}.$ Posons $X=\sqrt{x}. \ \, \mathrm{Alors}, \, g(x)=4\left(\frac{\ln X}{X}\right)^2.$ Or, $\lim_{x\to +\infty}X=+\infty$ et, par théorème, $\lim_{X\to +\infty}\frac{\ln X}{X}=0.$ Par produit, on en déduit que $\lim_{X\to +\infty}4\left(\frac{\ln X}{X}\right)^2=0$ et donc, par composition, $\overline{\lim_{x\to +\infty}g(x)=0}$.
 - **c.** La fonction g est dérivable sur $]0;+\infty[$ par produit et quotient de fonctions dérivables et, pour tout x>0,

$$g'(x) = \frac{\left(2 \times \frac{1}{x} \times \ln x\right) \times x - (\ln x)^2 \times 1}{x^2} = \frac{2 \ln x - (\ln x)^2}{x^2}$$

soit
$$g'(x) = \frac{\ln x(2 - \ln x)}{x^2}$$

d. Pour tout x > 0, le signe de g'(x) est le signe de $\ln(x)(2 - \ln x)$. Or, $\ln x \ge 0$ si et seulement si $x \ge 1$ et $2 - \ln x \ge 0$ si et seulement si $\ln x \le 2$ i.e. $x \le e^2$. On peut alors dresser un tableau de signe :

x	()		1		e^2		$+\infty$
$\begin{array}{c} \text{signe} \\ \text{de } \ln x \end{array}$			_	0	+		+	
signe de $2 - \ln x$			+		+	0	_	
signe de $g'(x)$			_	0	+	0	_	

ce qui conduit au tableau de variation suivant :

x	0	1	e^2	$+\infty$
g	+∞		4e ⁻²	0

3. a. Pour étudier les points d'intersection de C_f et C_g , on résout dans $]0; +\infty[$ l'équation f(x) = g(x):

$$\frac{\ln x}{x} = \frac{(\ln x)^2}{x} \Leftrightarrow \ln x = (\ln x)^2 \Leftrightarrow \ln x (1 - \ln x) = 0 \Leftrightarrow \ln x = 0 \text{ ou } \ln x = 1 \Leftrightarrow x = 1 \text{ ou } x = e.$$

Ainsi, les courbes C_f et C_g possèdent deux points communs : A(1;0) et $B(e;e^{-1})$

- **b.** Pour étudier la position relative des courbes C_f et C_g , on étudie le signe de la différence d(x) = f(x) g(x) pour $x \in]0; +\infty[$. Or, pour tout x > 0, $d(x) = \frac{\ln x}{x} \frac{(\ln x)^2}{x} = \frac{\ln x(1 \ln x)}{x}$ donc le signe de d(x) est le signe de $\ln x(1 \ln x)$. En procédant comme dans la question 2.d. on en déduit que $d(x) \leq 0$ pour tout $x \in [0;1] \cup [e;+\infty[$ et $d(x) \geq 0$ pour tout $x \in [1;e]$. Ainsi, $\sup [0;1]$ et sur $[e;+\infty[$, C_f est en dessous de C_g et, sur [1;e], C_f est au-dessus de C_g .
- 4. a. Notons (E) l'équation $(\ln x)^2 3 \ln x + 1 = 0$. Cette équation a un sens si et seulement si x > 0. Pour tout x > 0, posons $X = \ln x$. Alors, (E) s'écrit $X^2 3X + 1 = 0$. Le discriminant de ce trinôme est $\Delta = (-3)^2 4 \times 1 \times 1 = 5 > 0 \text{ donc le trinôme admet deux racines réelles distinctes} : X_1 = \frac{3 \sqrt{5}}{2}$ et $X_2 = \frac{3 + \sqrt{5}}{2}$. Il s'ensuit que

$$(E) \Leftrightarrow \ln x = \frac{3-\sqrt{5}}{2} \text{ ou } \ln x = \frac{3+\sqrt{5}}{2} \Leftrightarrow x = \mathrm{e}^{\frac{3-\sqrt{5}}{2}} \text{ ou } x = \mathrm{e}^{\frac{3+\sqrt{5}}{2}}.$$

Ainsi, l'ensemble des solutions de (E) est $\left\{e^{\frac{3-\sqrt{5}}{2}}, e^{\frac{3+\sqrt{5}}{2}}\right\}$.

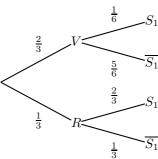
b. Soit a > 0. Par définition, le coefficient directeur T_a est $f'(a) = \frac{1 - \ln a}{a^2}$ et celui de T'_a est $g'(a) = \frac{2 \ln a - (\ln a)^2}{a^2}$. On en déduit que T_a et T'_a sont parallèles si et seulement si

$$\frac{1-\ln a}{a^2} = \frac{2\ln a - (\ln a)^2}{a^2} \Leftrightarrow \frac{1-\ln a - 2\ln a + (\ln a)^2}{a^2} \Leftrightarrow \frac{(\ln a)^2 - 3\ln a + 1}{a^2} = 0 \Leftrightarrow (E).$$

On déduit alors de la question a. qu'il existe exactement deux valeurs de a pour lesquelles T_a et T_a' sont parallèles qui sont les solutions (E) à savoir $e^{\frac{3-\sqrt{5}}{2}}$ et $e^{\frac{3+\sqrt{5}}{2}}$.

EXERCICE 2

1. a.



b. Comme les événements R et V forment une partition de l'univers, la formule des probabilités totales assure que

$$P(S_1) = P(V)P_V(S_1) + P(R)P_R(S_1) = \frac{2}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{2}{3} = \frac{1}{3}$$

 $\operatorname{donc} P(S_1) = \frac{1}{3}$

2. a. Soit $n \in \mathbb{N}^*$. Lorsqu'on lance un dé vert, la probabilité d'obtenir 6 est $\frac{1}{6}$. Comme les lancers sont indépendants, lorsqu'on lance n fois un dé vert, la probabilité d'obtenir 6 est $\left(\frac{1}{6}\right)^n$. Ainsi, $\left(\frac{1}{6}\right)^n$. De la même four $\left(\frac{1}{6}\right)^n$.

$$P_V(S_n) = \left(\frac{1}{6}\right)^n$$
. De la même façon, $P_R(S_n) = \left(\frac{2}{3}\right)^n$.

b. Soit $n \in \mathbb{N}^*$. Comme dans la question 1, la formule des probabilités totales assure que

$$P(S_n) = P(V)P_V(S_n) + P(R)P_R(S_n)$$

donc
$$P(S_n) = \frac{2}{3} \times \left(\frac{1}{6}\right)^n + \frac{1}{3} \times \left(\frac{2}{3}\right)^n$$
.

c. Soit $n \in \mathbb{N}^*$. Par définition,

$$p_n = \frac{P(R \cap S_n)}{P(S_n)} = \frac{P(R)P_R(S_n)}{P(S_n)} = \frac{\frac{1}{3} \times \left(\frac{2}{3}\right)^n}{\frac{2}{3} \times \left(\frac{1}{6}\right)^n + \frac{1}{3} \times \left(\frac{2}{3}\right)^n}.$$

En multipliant numérateur et dénominateur par $3 \times \left(\frac{3}{2}\right)^n$, il vient

$$p_n = \frac{1}{\frac{2}{3} \times \left(\frac{1}{6}\right)^n \times 3 \times \left(\frac{3}{2}\right)^n + 1} = \frac{1}{2 \times \left(\frac{1}{6} \times \frac{3}{2}\right)^n + 1} \text{ soit } p_n = \frac{1}{2 \times \left(\frac{1}{4}\right)^n + 1}$$

- **d.** Comme $-1 < \frac{1}{4} < 1$, $\lim_{n \to +\infty} \left(\frac{1}{4}\right)^n = 0$ et donc, par somme et quotient, $\lim_{n \to +\infty} p_n = 1$
- 3. a. Etant donné que (p_n) converge vers 1, par définition, il existe un entier n_0 tel que, pour tout $n \ge n_0$, $p_n \in]1-0,001$; 1+0,001[. En particulier, pour tout $n \ge n_0$, $p_n \ge 0,999$.

b.

Variables : E est un réel strictement compris entre 0 et 1

N est un entier naturel non nul

Entrée : E

Initialisation : Affecter à N la valeur 1

Traitement : Tant que $\frac{1}{2 \times \left(\frac{1}{4}\right)^{N} + 1} < E$

N prend la valeur N+1

Fin Tant que

Sortie : Afficher N

En entrant la valeur E= 0,999, on obtient en sortie le premier entier N tel que $p_N \ge 0,999$ et, comme (p_n) est croissante, cet entier est n_0 .

c. En utilisant la décroissance de la fonction inverse sur $]0; +\infty[$ et la croissance de la fonction ln sur $]0; +\infty[$, il vient :

$$p_n \ge 0.999 \Leftrightarrow \frac{1}{2 \times \left(\frac{1}{4}\right)^n + 1} \ge 0.999 \Leftrightarrow 2 \times \left(\frac{1}{4}\right)^n + 1 \le \frac{1}{0.999}$$
$$\Leftrightarrow 2 \times \left(\frac{1}{4}\right)^n \le \frac{1}{0.999} - 1 \Leftrightarrow \left(\frac{1}{4}\right)^n \le \frac{1}{1.998} - \frac{1}{2}$$
$$\Leftrightarrow n \ln\left(\frac{1}{4}\right) \le \ln\left(\frac{1}{1.998} - \frac{1}{2}\right) \Leftrightarrow n \ge \frac{\ln\left(\frac{1}{1.998} - \frac{1}{2}\right)}{\ln\left(\frac{1}{4}\right)} \quad (\text{car } \ln\left(\frac{1}{4}\right) < 0.)$$

Etant donné que $\frac{\ln\left(\frac{1}{1,998} - \frac{1}{2}\right)}{\ln\left(\frac{1}{4}\right)} \approx 5,5$, on en déduit que $\boxed{n_0 = 6}$.

EXERCICE 3

1. Calculons les longueurs des trois côtés de OAB :

OA =
$$|z_A| = |2 - 5i| = \sqrt{2^2 + (-5)^2} = \sqrt{29}$$
, OB = $|z_B| = |7 - 3i| = \sqrt{7^2 + (-3)^2} = \sqrt{58}$
etAB = $|z_B - z_A| = |7 - 3i - (2 - 5i)| = |5 + 2i| = \sqrt{5^2 + 2^2} = \sqrt{29}$

Ainsi, OA = AB donc OAB est isocèle en A. De plus, $OB^2 = 58$ et $OA^2 + AB^2 = 29 + 29 = 58$ donc la réciproque du théorème de Pythagore assure que OAB est rectangle en A.

Conclusion: la proposition 1 est vraie.

2. Notons C et D les points d'abscisses respectives $z_{\rm C}={\rm i}$ et $z_{\rm D}=-2{\rm i}$. Alors,

$$M(z) \in (\Delta) \Leftrightarrow |z - z_{A}| = |z - z_{B}| \Leftrightarrow AM = BM.$$

On en déduit que (Δ) est la médiatrice de [AB] donc c'est bien une droite.

Conclusion: la proposition 2 est vraie.

- 3. A l'aide de la calculatrice, on constate que $z^6 = -1728$ donc pour n = 2, z^{3n} n'est pas imaginaire pur. Conclusion: la proposition 3 est fausse.
- 4. Soit z un nombre complexe de module 1. Par théorème, $z\overline{z}=\left|z\right|^{2}=1^{2}=1$ donc $z=\frac{1}{\overline{z}}$. Conclusion : la proposition 4 est vraie.
- 5. Soit z un nombre complexe non nul dont un argument est $\frac{\pi}{2}$. Alors, z est un imaginaire pur dont la partie imaginaire est positive i.e. z est de la forme z = ik avec $k \in]0$; $+\infty[$. Dès lors, |i+z| = |i+ik| = |i(1+k)| = |i| |1+k| = 1+k car |i| = 1 et k > 0. Or, 1+|z| = 1+|ik| = 1+k car k > 0. Conclusion: la proposition 5 est vraie.

EXERCICE 4

- 1. a. Comme I et J sont les milieux respectifs de [OA] et [OB], le théorème de la droite des milieux appliqué dans le triangle OAB assure que (IJ) est parallèle (AB).
 - b. Commençons par remarquer que les droites (AC) et (IK) sont coplanaires donc elles sont soit sécantes soit parallèles. Or, d'après le théorème de la droite des milieux, la parallèle à (AC) passant par I coupe le segment [OC] en son milieu. Comme K n'est pas le milieu de [OC], on en déduit que (IK) n'est pas parallèle à (AC). Dès lors, (IK) et (AC) sont sécantes en un point M.
 - c. Comme les droites (IJ) et (AC) sont sécantes en M, le point M est commun aux plans (IJK) et (ABC) donc ceux-ci ne sont pas strictement parallèles. Par ailleurs, le point I appartient à (IJK) mais pas à (ABC) donc ces plans ne sont pas confondus. On en déduit qu'ils sont sécants et que leur intersection est une droite. De plus, d'après ce qui précède, cette droite passe par M et N donc, finalement, $(ABC) \cap (IJK) = (MN)$.
- 2. a. Sachant que $\overrightarrow{OG} = \frac{1}{3}(\overrightarrow{OI} + \overrightarrow{OJ} + \overrightarrow{OK})$, $3\overrightarrow{OG} = \overrightarrow{OI} + \overrightarrow{OJ} + \overrightarrow{OK}$. Or, par la relation de Chasles,

$$\overrightarrow{OI} + \overrightarrow{OJ} + \overrightarrow{OK} = (\overrightarrow{OG} + \overrightarrow{GI}) + (\overrightarrow{OG} + \overrightarrow{GJ}) + (\overrightarrow{OG} + \overrightarrow{GK}) = 3\overrightarrow{OG} + \overrightarrow{GI} + \overrightarrow{GJ} + \overrightarrow{GK}.$$

On en déduit que $3\overrightarrow{OG} = 3\overrightarrow{OG} + \overrightarrow{GI} + \overrightarrow{GJ} + \overrightarrow{GK}$ donc $\overrightarrow{0} = \overrightarrow{GI} + \overrightarrow{GJ} + \overrightarrow{GK}$ et donc, finalement, $\overrightarrow{KG} = \overrightarrow{GI} + \overrightarrow{GJ}$.

Cette égalité démontre que les vecteurs \overrightarrow{KG} , \overrightarrow{GI} et \overrightarrow{GJ} sont coplanaires et donc <u>les quatre points I</u>, <u>J</u>, <u>K</u> et <u>G</u> sont coplanaires.

b. Toujours grâce à la relation de Chasles, en utilisant le fait que E est le milieu de [IJ],

$$\overrightarrow{\mathrm{KG}} = \overrightarrow{\mathrm{GI}} + \overrightarrow{\mathrm{GJ}} = \overrightarrow{\mathrm{GE}} + \overrightarrow{\mathrm{EI}} + \overrightarrow{\mathrm{GE}} + \overrightarrow{\mathrm{EJ}} = 2\overrightarrow{\mathrm{GE}} + \underbrace{\overrightarrow{\mathrm{EI}} + \overrightarrow{\mathrm{EJ}}}_{\overrightarrow{\mathrm{O}}}.$$

Ainsi,
$$\overrightarrow{KG} = 2\overrightarrow{GE}$$

Il s'ensuit que $\overrightarrow{KG} = 2(\overrightarrow{GK} + \overrightarrow{KE})$ donc $3\overrightarrow{KG} = 2\overrightarrow{KE}$ i.e. $\overrightarrow{KG} = \frac{2}{3}\overrightarrow{KE}$. Ainsi, G est le point situé sur la médiane aux deux tiers en partant du sommet K donc G est le centre de gravité du triangle IJK.

4

- **3.** a. La droite (OG) passe par O et est dirigée par le vecteur \overrightarrow{OG} de coordonnées $\left(\frac{1}{3}; \frac{1}{3}; \frac{1}{3}\right)$ donc une représentation paramétrique de la droite (OG) est $\begin{cases} x = \frac{1}{3}t \\ y = \frac{1}{3}t \text{ où } t \in \mathbb{R}. \\ z = \frac{1}{3}t \end{cases}$
 - b. Les coordonnées de \overrightarrow{AB} et \overrightarrow{AC} sont respectivement \overrightarrow{AB} (-2;2;0) et \overrightarrow{AC} (-2;0;3). Ces deux vecteurs ne sont pas colinéaires, ils forment donc un couple de vecteurs directeurs du plan (ABC). Il s'ensuit qu'une représentation paramétrique de (ABC) est $\begin{cases} x=2-2k-2k' \\ y=2k \\ z=3k' \end{cases}$ où $k \in \mathbb{R}$ et $k' \in \mathbb{R}$.
 - c. Pour étudier l'intersection du plan (ABC) et de la droite (OG), nous allons résoudre le système $(S) \begin{cases} \frac{1}{3}t = 2 2k 2k' \\ \frac{1}{3}t = 2k \\ \frac{1}{3}t = 3k' \end{cases}.$

$$(S) \Leftrightarrow \begin{cases} \frac{1}{3}t = 2 - 2 \times \frac{1}{6}t - 2 \times \frac{1}{9}t \\ \frac{1}{6}t = k \\ \frac{1}{9}t = k' \end{cases} \Leftrightarrow \begin{cases} \frac{1}{3}t + \frac{1}{3}t + \times \frac{2}{9}t = 2 \\ \frac{1}{6}t = k \\ \frac{1}{9}t = k' \end{cases} \Leftrightarrow \begin{cases} \frac{8}{9}t = 2 \\ \frac{1}{6}t = k \\ \frac{1}{9}t = k' \end{cases} \Leftrightarrow \begin{cases} t = \frac{9}{4} \\ k = \frac{3}{8} \\ k' = \frac{1}{4} \end{cases}.$$

- Comme (S) admet une unique solution, on en déduit que (ABC) et (OG) sont sécants en un point H. De plus, ce point est le point de paramètre $t=\frac{9}{4}$ pour la représentation paramétrique de (OG) déterminée à la question 1 donc les coordonnées de H sont $(\frac{1}{3} \times \frac{9}{4}; \frac{1}{3} \times \frac{9}{4}; \frac{1}{3} \times \frac{9}{4})$ i.e. $H(\frac{3}{4}; \frac{3}{4}; \frac{3}{4})$.
- **d.** Les coordonnées de F sont $(\frac{2+0}{2}; \frac{0+2}{2}; \frac{0+0}{2})$ i.e. F(1;1;0). Dès lors, les coordonnées des vecteurs \overrightarrow{CF} et \overrightarrow{CH} sont respectivement \overrightarrow{CF} (1;1;-3) et \overrightarrow{CH} $(\frac{3}{4};\frac{3}{4};-\frac{9}{4})$. Ainsi, \overrightarrow{CH} = $\frac{3}{4}\overrightarrow{CF}$ donc les vecteurs \overrightarrow{CF} et \overrightarrow{CH} sont colinéaires i.e. C, F et H sont alignés et donc \overrightarrow{H} appartient à (\overrightarrow{CF}) .