Corrigé du devoir surveillé de mathématiques du 15/10/2016

EXERCICE 1 (4 points)

- **1.** a. $P(3i) = (3i)^4 4(3i)^3 + 14(3i)^2 36(3i) + 45 = 81 + 108i 126 108i + 45 donc <math>P(3i) = 0$.
 - **b.** Soit w un nombre complexe. Supposons que P(w) = 0. Alors, grâce aux propriétés de la conjugaison complexe,

$$P(\overline{w}) = \overline{w}^4 - 4\overline{w}^3 + 14\overline{w}^2 - 36\overline{w} + 45$$

$$= \overline{w}^4 - 4\overline{w}^3 + 14\overline{w}^2 - 36\overline{w} + 45$$

$$= \overline{w}^4 - 4\overline{w}^3 + 14\overline{w}^2 - 36\overline{w} + 45$$

$$= \overline{P(w)} = \overline{0} = 0$$

 $\operatorname{donc} \left[P(\overline{w}) = 0 \right].$

- c. Il suit immédiatement des questions précédentes que 3i et $\overline{3i} = -3i$ sont deux solutions de l'équation P(z) = 0.
- **2.** a. Soit $z \in \mathbb{C}$. Alors,

$$(z^2+9)(z^2-4z+5) = z^4-4z^3+5z^2+9z^2-36z+45 = z^4-4z^3+14z^3-36z+45 = P(z)$$

donc, pour tout complexe z, $P(z) = (z^2 + 9)(z^2 - 4z + 5)$.

b. On déduit de la question précédente que

$$P(z) = 0 \Leftrightarrow z^2 + 9 = 0 \text{ ou } z^2 - 4z + 5 = 0.$$

Or, d'une part

$$z^2 + 9 = 0 \Leftrightarrow z^2 + 3^2 = 0 \Leftrightarrow (z - 3i)(z + 3i) = 0 \Leftrightarrow z = 3i \text{ ou } z = -3i$$

et, d'autre part, le discriminant du trinôme z^2-4z+5 est $\Delta=(-4)^2-4\times 1\times 5=-4<0$ donc l'équation $z^2-4z+5=0$ admet deux solutions complexes conjuguées qui sont $z_1=\frac{-(-4)-\mathrm{i}\sqrt{4}}{2\times 1}=2-\mathrm{i}$ et $z_2=\overline{z_1}=2+\mathrm{i}$.

Finalement, on conclut que <u>l'ensemble des solutions dans</u> \mathbb{C} de <u>l'équation</u> P(z) = 0 <u>est</u> $\{3i, -3i, 2-i, 2+i\}$.

EXERCICE 2 (6 points)

- 1. VRAIE car $\frac{1}{\sqrt{2}+i} = \frac{\sqrt{2}-i}{\sqrt{2}^2+1^2} = \frac{\sqrt{2}-i}{3} = \frac{\sqrt{2}}{3} \frac{1}{3}i$.
- **2.** FAUSSE car si z = i et z' = 0 alors

$$(1+iz)(2-iz') = (1+i^2) \times 2 = (1-1) \times 2 = 0$$

donc, dans ce cas, la partie réelle est 0 alors que $2+zz'=2+\mathrm{i}\times 0=2\neq 0.$

3. FAUSSE car si z = i alors

$$\frac{1+iz}{1+3i} = \frac{1+i^2}{1+3i} = \frac{1-1}{1+3i} = 0$$

dont le conjugué est 0. Or, dans ce cas,

$$\frac{1 - iz}{1 - 3i} = \frac{1 - i^2}{1 - 3i} = \frac{2}{1 - 3i} \neq 0.$$

- **4.** FAUSSE car si M a pour affixe z=0 alors M n'appartient par à la droite d'équation x=1 mais $z^2+2\overline{z}=0^2+2\times 0=0$ est réel.
- 5. VRAIE car si z est un complexe non nul tel que $z + \frac{1}{z}$ est un imaginaire pur alors il existe un réel b tel que $z + \frac{1}{z} = ib$ donc $\left(z + \frac{1}{z}\right)^2 = (ib)^2$ i.e. $z^2 + 2 \times z \times \frac{1}{z} + \left(\frac{1}{z}\right)^2 = -b^2$ soit encore $z^2 + 2 + \frac{1}{z^2} = -b^2$ et ainsi $z^2 + \frac{1}{z^2} = -b^2 2$ est un réel.
- 6. VRAIE car

$$(1+i\sqrt{3})^3 = (1+i\sqrt{3})^2(1+i\sqrt{3}) = (1+2i\sqrt{3}-3)(1+i\sqrt{3})$$
$$= (-2+2i\sqrt{3})(1+i\sqrt{3}) = -2-2i\sqrt{3}+2i\sqrt{3}-6$$
$$= -8$$

donc, pour tout entier naturel n, $(1+i\sqrt{3})^{3n}=\left[(1+i\sqrt{3})^3\right]^n=(-8)^n$ est un réel.

EXERCICE 2 (10 points)

Partie A. — On peut présenter les différentes étapes de fonctionnement de l'algorithme sous la forme du tableau suivant.

	k	u
Initialisation		5
Étape 1	1	1
Étape 2	2	-0,5
Sortie		-0,5

En sortie, on obtient le nombre -0.5.

Partie B

1. On peut modifier l'algorithme de la partie A de la façon suivante :

Variables:	k et p sont des entiers naturels	
	u est un réel	
Entrée :	Demander la valeur de p	
Traitement:	Affecter à u la valeur 5	
	Pour k variant de 1 à p	
	Afficher u	
	Affecter à u la valeur $0.5u + 0.5(k-1) - 1.5$	
	Fin de pour	
Sortie:	Afficher u	

- 2. Les premières valeurs de la suite ne permettent pas d'affirmer quoi que ce soit. En l'occurrence, la suite n'est pas décroissante car $u_4 = 0.5u_3 + 0.5 \times 3 1.5 = -0.375 > u_3$.
- 3. Considérons, pour tout entier naturel $n \ge 3$, la proposition $P_n : \langle u_{n+1} > u_n \rangle$. On a vu à la question précédente que $u_4 = -0.375 > u_3 = -0.75$ donc P_3 est vraie. Supposons que P_k est vraie pour un certain entier $k \ge 3$. Alors, $u_{k+1} > u_k$ donc $0.5u_{k+1} > 0.5u_k$ (car 0.5 > 0) et ainsi

$$\underbrace{0.5u_{k+1} + 0.5(k+1) - 1.5}_{u_{k+2}} > 0.5u_k + 0.5(k+1) - 1.5 = 0.5u_k + 0.5k - 1 > \underbrace{0.5u_k + 0.5k - 1.5}_{u_{k+1}}$$

car -1 > -1,5. Ainsi, $u_{k+2} > u_{k+1}$ donc P_{k+1} est vraie et on a donc démontré par récurrence que, pour tout entier $n \ge 3$, $u_{n+1} > u_n$.

On en déduit que la suite (u_n) est (strictement) croissante à partir du rang 3

4. Soit $n \in \mathbb{N}$. Alors,

$$v_{n+1} = 0.1u_{n+1} - 0.1(n+1) + 0.5$$

$$= 0.1(0.5u_n + 0.5n - 1.5) - 0.1n - 0.1 + 0.5$$

$$= 0.05u_n + 0.05n - 0.15 - 0.1n + 0.4$$

$$= 0.05u_n - 0.05n + 0.25$$

$$= 0.5(0.1u_n - 0.1n + 0.5)$$

i.e. $v_{n+1} = 0.5v_n$ donc la suite (v_n) est géométrique de raison 0.5 .

De plus, $v_0 = 0.1u_0 - 0.1 \times 0 + 0.5 = 0.1 \times 5 + 0.5 = 1$ donc, pour tout $n \in \mathbb{N}$, $v_n = 0.5^n$

5. On en déduit que, pour tout entier naturel n,

$$u_n = \frac{1}{0.1}(v_n + 0.1n - 0.5) = 10(0.5^n + 0.1n - 0.5)$$

soit, pour tout $n \in \mathbb{N}$, $u_n = 10 \times 0.5^n + n - 5$.

6. Comme -1 < 0.5 < 1, $\lim_{n \to +\infty} 0.5^n = 0$ donc $\lim_{n \to +\infty} 10 \times 0.5^n = 0$. Par ailleurs, $\lim_{n \to +\infty} n - 5 = +\infty$ donc, par somme, $\lim_{n \to +\infty} u_n = +\infty$.